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Abstract This paper introduces a novel fuzzy rule-based classification method
called FURIA, which is short for Fuzzy Unordered Rule Induction Algorithm. FURIA
extends the well-known RIPPER algorithm, a state-of-the-art rule learner, while pre-
serving its advantages, such as simple and comprehensible rule sets. In addition, it
includes a number of modifications and extensions. In particular, FURIA learns fuzzy
rules instead of conventional rules and unordered rule sets instead of rule lists. More-
over, to deal with uncovered examples, it makes use of an efficient rule stretching
method. Experimental results show that FURIA significantly outperforms the original
RIPPER, as well as other classifiers such as C4.5, in terms of classification accuracy.

Keywords Classification · Rule learning · Fuzzy logic · Rule stretching

1 Introduction

The learning of rule-based classification models has been an active area of research for
a long time. In fact, the interest in rule induction goes far beyond the field of machine
learning itself and also includes other fields, notably fuzzy systems (Hüllermeier
2005). This is hardly surprising, given that rule-based models have always been a
cornerstone of fuzzy systems and a central aspect of research in that field. To a large

Responsible editor: Charles Elkan.

J. Hühn · E. Hüllermeier (B)
Department of Mathematics and Computer Science, Philipps-Universität Marburg,
Mehrzweckgebäude, Hans-Meerwein-Straße, Marburg 35043, Germany
e-mail: eyke@informatik.uni-marburg.de

J. Hühn
e-mail: huehnj@informatik.uni-marburg.de

123



294 J. Hühn, E. Hüllermeier

extent, the popularity of rule-based models can be attributed to their comprehensibil-
ity, a distinguishing feature and key advantage in comparison to many other (black-
box) classification models. Despite the existence of many sound algorithms for rule
induction, the field still enjoys great popularity and, as shown by recent publications
(Ishibuchi and Yamamoto 2005; Cloete and Van Zyl 2006; Juang et al. 2007; Fernández
et al. 2007), offers scope for further improvements.

This paper proposes a novel fuzzy rule-based classification method called Fuzzy
Unordered Rule Induction Algorithm, or FURIA for short, which is a modification
and extension of the state-of-the-art rule learner RIPPER (Cohen 1995). In particular,
FURIA learns fuzzy rules instead of conventional rules and unordered rule sets instead
of rule lists. Moreover, to deal with uncovered examples, it makes use of an efficient
rule stretching method.

Fuzzy rules are more general than conventional rules and have a number of
advantages. For example, conventional (non-fuzzy) rules produce models with “sharp”
decision boundaries and, correspondingly, abrupt transitions between different clas-
ses. This property is questionable and not very intuitive. Instead, one would expect
the support for a class provided by a rule to decrease from “full” (inside the core of
the rule) to “zero” (near the boundary) in a gradual rather than an abrupt way. Fuzzy
rules have “soft” boundaries, which is one of their main characteristics. Admittedly,
if a definite classification decision has to be made, soft boundaries have again to be
turned into crisp boundaries. Interestingly, however, these boundaries are potentially
more flexible in the fuzzy case. For example, by using suitable aggregation operators
for combining fuzzy rules, they are not necessarily axis-parallel (Press et al. 1992).

The result of most conventional rule learners is a decision list. To produce such
a list, rules are learned for each class in turn, starting with the smallest (in terms of
relative frequency of occurrence) and ending with the second largest one. Finally, a
default rule is added for the majority class. A new query instance is then classified
by the first rule in the list by which it is covered.1 This approach has advantages but
some disadvantages. For example, it may come along with an unwanted bias since
classes are no longer treated in a symmetric way. Moreover, sorting rules by priority
compromises comprehensibility (the condition part of each rule implicitly contains
the negated conditions of all previous rules). To avoid these problems, FURIA learns
an unordered set of rules, namely a set of rules for each class in a one-vs-rest scheme.
This, however, means that the resulting model is not necessarily complete, i.e., it may
happen that a new query is not covered by any rule (in this regard, decision lists are
obviously less problematic). To deal with such cases, we propose a novel rule stretch-
ing method which is based on (Eineborg and Boström 2001). The idea is to generalize
the existing rules until they cover the example. As an advantage over the use of a
default rule, note that rule stretching is a local strategy that exploits information in the
vicinity of the query.

In the next section, we recall the basics of the RIPPER algorithm. In Sect. 3, we
introduce FURIA and give a detailed explanation of its novelties. An experimen-
tal evaluation is presented in Sect. 4. Here, it is shown that FURIA significantly

1 An interesting probabilistic interpretation of rules in a rule list was recently proposed by Fawcett (2008).
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outperforms the original RIPPER, as well as other classifiers such as C4.5, in terms of
classification accuracy. Besides, the impact of the different modifications distinguish-
ing FURIA from RIPPER are investigated. Section 5 is devoted to related work. The
paper ends with a summary and concluding remarks in Sect. 6.

2 Outline of RIPPER

RIPPER was introduced by Cohen (1995) as a successor of the IREP algorithm for rule
induction (Fürnkranz and Widmer 1994). Even though the key principles remained
unchanged, RIPPER improves IREP in many details and is also able to cope with
multi-class problems.

Consider a polychotomous classification problem with m classes L
df= {λ1, . . . , λm}.

Suppose instances to be represented in terms of attributes Ai , i = 1, . . . , n, which
are either numerical (real-valued) or nominal, and let Di denote the corresponding
domains. Thus, an instance is represented as an n-dimensional attribute vector

x = (x1, . . . , xn) ∈ D
df= D1 × . . .× Dn .

A single RIPPER rule is of the form r = 〈rA | rC 〉, consisting of a premise part rA and
a consequent part rC . The premise part rA is a conjunction of predicates (selectors)
which are of the form (Ai = vi ) for nominal and (Ai θ vi ) for numerical attributes,
where θ ∈ {≤,=,≥} and vi ∈ Di . The consequent part rC is a class assignment of
the form (class = λ), where λ ∈ L. A rule r = 〈rA | rC 〉 is said to cover an instance
x = (x1, . . . , xn) if the attribute values xi satisfy all the predicates in rA.

RIPPER learns such rules in a greedy manner, following a separate-and-conquer
strategy (Fürnkranz 1999). Prior to the learning process, the training data is sorted
by class labels in ascending order according to the corresponding class frequencies.
Rules are then learned for the first m−1 classes, starting with the smallest one. Once a
rule has been created, the instances covered by that rule are removed from the training
data, and this is repeated until no instances from the target class are left. The algorithm
then proceeds with the next class. Finally, when RIPPER finds no more rules to learn,
a default rule (with empty antecedent) is added for the last (and hence most frequent)
class.

Rules for single classes are learned until either all positive instances are covered
or the last rule r that has been added was “too complicated”. The latter property is
implemented in terms of the total description length (Quinlan 1995): The stopping
condition is fulfilled if the description length of r is at least d bits longer than the
shortest description length encountered so far; Cohen suggests choosing d = 64.2

2 Essentially, the description length of a rule depends on the number selectors in its premise part; see
Quinlan (1993) for more details.
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2.1 Learning individual rules

Each individual rule is learned in two steps. The training data, which has not yet been
covered by any rule, is therefore split into a growing and a pruning set. In the first
step, the rule will be specialized by adding antecedents which were learned using the
growing set. Afterward, the rule will be generalized by removing antecedents using
the pruning set.

When RIPPER learns a rule for a given class, the examples of that class are denoted
as positive instances, whereas the examples from the remaining classes are denoted
as negative instances.

Rule growing: A new rule is learned on the growing data, using a propositional
version of the FOIL algorithm (Quinlan 1990; Quinlan and Cameron-Jones 1993).3

It starts with an empty conjunction and adds selectors until the rule covers no more
negative instances, i.e., instances not belonging to the target class. The next selector
to be added is chosen so as to maximize FOIL’s information gain criterion (IG), which
is a measure of improvement of the rule in comparison with the default rule for the
target class:

IGr
df= pr ×

(
log2

(
pr

pr + nr

)
− log2

(
p

p + n

))
,

where pr and nr denote, respectively, the number of positive and negative instances
covered by the rule; likewise, p and n denote the number of positive and negative
instances covered by the default rule.

Rule pruning: The above procedure typically produces rules that overfit the train-
ing data. To remedy this effect, a rule is simplified so as to maximize its performance
on the pruning data.

For the pruning procedure, the antecedents are considered in the order in which
they were learned, and pruning actually means finding a position at which that list of
antecedents is cut. The criterion to find that position is the rule-value metric:

V (r)
df= pr − nr

pr + nr

Therewith, all those antecedents will be pruned that were learned after the antecedent
maximizing V (r); shorter rules are preferred in the case of a tie.

2.2 Rule optimization

The ruleset RS produced by the learning algorithm outlined so far, called IREP*, is
taken as a starting point for a subsequent optimization process. This process
re-examines the rules ri ∈ RS in the order in which they were learned. For each
ri , two alternative rules r ′i and r ′′i are created. The replacement rule r ′i is an empty

3 Apart from RIPPER, several other rule learners have been built upon FOIL, for example the HYDRA
algorithm by Kamal and Pazzani (1993).
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rule, which is grown and pruned in a way that minimizes the error of the modified
ruleset (RS ∪ {r ′i }) \ {ri }. The revision rule r ′′i is created in the same way, except that
it starts from ri instead of the empty rule. To decide which version of ri to retain, the
MDL (Minimum Description Length (Quinlan 1993) criterion is used. Afterward, the
remaining positives are covered using the IREP* algorithm.

The RIPPER k algorithm iterates the optimization of the ruleset and the subsequent
covering of the remaining positive examples with IREP* k times, hence the name
RIPPER (Repeated Incremental Pruning to Produce Error Reduction).

3 FURIA

This section presents the novel FURIA algorithm. Since FURIA builds upon the
RIPPER algorithm, the corresponding modifications and extensions will be especially
highlighted.

3.1 Learning unordered rule sets

A first modification of RIPPER concerns the type of rule model that is learned and,
related to this, the use of default rules. As already mentioned in the introduction, learn-
ing a decision list and using one class as a default prediction has some disadvantages.
In particular, it comes along with a systematic bias in favor of the default class. To
avoid this problem, Boström (2004) has proposed an unordered version of RIPPER’s
predecessor IREP (Fürnkranz and Widmer 1994). Likewise, we propose to learn a rule
set for every single class, using a one-vs-rest decomposition. Consequently, FURIA
learns to separate each class from all other classes, which means that no default rule
is used and the order of the classes is irrelevant.4

When using an unordered rule set without default rule, two problems can occur in
connection with the classification of a new query instance: First, a conflict may occur
since the instance is equally well covered by rules from different classes. As will be
seen in Sect. 3.5, this problem is rather unlikely to occur and, in case it still does, can
easily be resolved. Second, it may happen that the query is not covered by any rule. To
solve this problem, we propose a novel rule stretching method. The idea, to be detailed
in Sect. 3.6, is to modify the rules in a local way so as to make them applicable to the
query.

3.2 Pruning modifications

The RIPPER algorithm can be divided into the building and the optimization phase.
The rule building is done via the IREP* algorithm, which essentially consists of
a propositional FOIL algorithm, the pruning strategy (cf. Sect. 2.1) and the stopping
conditions. Interestingly, we found that the pruning strategies in IREP* have a negative

4 It is worth mentioning that, while Release 1 based on (Cohen 1995) only supported ordered rule lists, an
unordered approach is also included in a more recent RIPPER implementation of Cohen (Release 2.5).

123



298 J. Hühn, E. Hüllermeier

influence on the performance of FURIA. We therefore omitted the pruning step and
instead learned the initial ruleset on the whole training data directly. To explain this
finding, note that, without pruning, IREP* produces more specific rules that better fit
the data. More importantly, small rules provide a better starting point for our fuzzifi-
cation procedure, to be detailed in Sect. 3.4, in which rules can be made more general
but not more specific.

In the optimization phase, the pruning was retained, as its deactivation was not
beneficial. This is in agreement with the goal to minimize the MDL. The coverage of
the remaining positive instances, which is again accomplished by IREP*, also bene-
fited from omitting the pruning, just like IREP* in the building phase.

FURIA still applies pruning when it comes to creating the replacement and the
revision rule. Here, the original pruning strategy is applied, except in case the pruning
strategy tries to remove all antecedents from a rule, thereby generating a default rule.
In this case, the pruning will be aborted, and the unpruned rule will be used for the
MDL comparison in the optimization phase. We found that those pruning strategies
are still sufficient to avoid overfitting. Thus, the removal of the pruning in the IREP*
part has no negative impact on classification accuracy.

3.3 Representation of fuzzy rules

A selector constraining a numerical attribute Ai (with domain Di = R) in a RIPPER
rule can obviously be expressed in the form (Ai ∈ I ), where I ⊆ R is an interval:
I = (−∞, v] if the rule contains a selector (Ai ≤ v), I = [u,∞) if it contains a
selector (Ai ≥ u), and I = [u, v] if it contains both (in the last case, two selectors are
combined).

Essentially, a fuzzy rule is obtained through replacing intervals by fuzzy intervals,
namely fuzzy sets with trapezoidal membership function.

A fuzzy interval of that kind is specified by four parameters and will be written
I F = (φs,L , φc,L , φc,U , φs,U ):

I F (v)
df=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 φc,L ≤ v ≤ φc,U

v−φs,L

φc,L−φs,L φs,L < v < φc,L

φs,U−v

φs,U−φc,U φc,U < v < φs,U

0 else

φc,L and φc,U are, respectively, the lower and upper bound of the core (elements with
membership 1) of the fuzzy set; likewise, φs,L and φs,U are, respectively, the lower
and upper bound of the support (elements with membership > 0), see Fig. 1.

Note that, as in the non-fuzzy case, a fuzzy interval can be open to one side (φs,L =
φc,L = −∞ or φc,U = φs,U = ∞). In fact, as will be seen later on, the fuzzy
antecedents successively learned by FURIA are fuzzy half-intervals of exactly that
kind.
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φ s,L φ c,L φ c,U φ s,U

0

IF

1

Fig. 1 A fuzzy interval I F

A fuzzy selector (Ai ∈ I F
i ) covers an instance x = (x1 . . . xn) to the degree I F

i (xi ).
A fuzzy rule r F involving k selectors (Ai ∈ I F

i ), i = 1 . . . k, covers x to the degree

µr F (x) =
∏

i=1...k

I F
i (xi ). (1)

3.4 Rule fuzzification

To obtain fuzzy rules, the idea is to fuzzify the final rules from our modified RIPPER
algorithm. More specifically, using the training set DT ⊆ D for evaluating candidates,
the idea is to search for the best fuzzy extension of each rule, where a fuzzy extension
is understood as a rule of the same structure, but with intervals replaced by fuzzy
intervals. Taking the intervals Ii of the original rules as the cores [φc,L

i , φ
c,U
i ] of the

sought fuzzy intervals I F
i , the problem is to find optimal bounds for the respective

supports, i.e., to determine φ
s,L
i and φ

s,U
i .

For the fuzzification of a single antecedent (Ai ∈ Ii ) it is important to consider
only the relevant training data Di

T, i.e., to ignore those instances that are excluded by
any other antecedent (A j ∈ I F

j ), j 
= i :

Di
T =

{
x = (x1 . . . xk) ∈ DT | I F

j (x j ) > 0 for all j 
= i
}
⊆ DT (2)

We partition Di
T into the subset of positive instances, Di

T+ , and negative instances,

Di
T− . To measure the quality of a fuzzification, the rule purity will be used:

pur = pi

pi + ni
, (3)

where

pi
df= ∑

x∈Di
T+

µAi (x)

ni
df= ∑

x∈Di
T−

µAi (x)
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Algorithm 1 The antecedent fuzzification algorithm for a single rule r

1: Let A be the set of numeric antecedents of r
2: while A 
= ∅ do
3: amax← null {amax denotes the antecedent with the highest purity}
4: purmax← 0 {purmax is the highest purity value, so far}
5: for i ← 1 to size(A) do
6: compute the best fuzzification of A[i] in terms of purity
7: purA[i] ← be the purity of this best fuzzification
8: if pur A[i] > purmax then
9: purmax← pur A[i]
10: amax← A[i]
11: end if
12: end for
13: A← A \ amax
14: Update r with amax
15: end while

Rules are fuzzified in a greedy way, as shown by Algorithm 1. In each iteration, a
fuzzification is computed for every antecedent, namely the best fuzzification in terms
of (3). This is done by testing all values

{xi | x = (x1, . . . , xk) ∈ Di
T, xi < φ

c,L
i }

as candidates for φ
s,L
i and, likewise, all values

{xi | x = (x1, . . . , xk) ∈ Di
T, xi > φ

c,U
i }

as candidates for φ
s,U
i (see Fig. 2). Ties are broken in favor of larger fuzzy sets, that

is, larger distances from the core.
The fuzzification is then realized for the antecedent with the largest purity. This is

repeated until all antecedents have been fuzzified. It is important to mention that there
exists a trivial fuzzification which is always found, namely the one that sets the support
bound to the first instance behind the core bound. Even though this fuzzification does
not change the purity on the training data, it is meaningful when it comes to classifying
new instances.

A

possible support bounds φ s,Uφ c,U

0

IF

1

Fig. 2 Examination of possible support bounds given a crisp antecedent
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Note that the fuzzification of a single antecedent may change the relevant training
data (2), which is hence recomputed in each iteration. In fact, each fuzzification may
increase the number of covered instances, which in turn may also influence the rule
purity. Furthermore, note that, after the complete premise part of a rule has been
fuzzified, the whole procedure could in principle be repeated until convergence is
achieved (convergence is guaranteed, as purity can only increase in each iteration).
We did not implement this option, however, as we observed that, except for very rare
cases, convergence is already achieved after the first iteration.

To analyze the complexity of the above fuzzification procedure, note that, in each
iteration, at most |DT | instances (support bounds) are checked for every candidate
attribute. Since the total number of iterations is bounded by the number of attributes,
n, the overall complexity is O(|DT |n2).

With regard to the readability of rules, we consider our fuzzy extension as uncritical.
Essentially, the difference is that sharp boundaries of a rule are replaced by “soft”
boundaries: A fuzzy rule is uniquely characterized by its core and its support. It is
valid inside the core and invalid outside the support; in-between, the validity drops in
a gradual way. Consider, for example, the rule 〈A ≤ 5 | + 〉, which indicates that if
attribute A is smaller or equal to 5, then the class is positive. Here, the rule is valid
for A ≤ 5 and invalid for A > 5. Similarly, a fuzzy rule 〈A ∈ (−∞,−∞, 5, 8) | + 〉
suggests that the rule is completely valid for A ≤ 5, invalid for A > 8, and partially
valid in-between.

3.5 Classifier output

Suppose that fuzzy rules r ( j)
1 . . . r ( j)

k have been learned for class λ j . For a new query
instance x, the support of this class is defined by

s j (x)
df=

∑
i=1...k

µ
r ( j)

i
(x) · C F

(
r ( j)

i

)
, (4)

where C F(r ( j)
i ) is the certainty factor of the rule r ( j)

i . It is defined as follows:

C F
(

r ( j)
i

)
=

2
|D( j)

T ||DT | +
∑

x∈D( j)
T

µ
r ( j)

i
(x)

2+∑
x∈DT

µ
r ( j)

i
(x)

, (5)

where D( j)
T denotes the subset of training instances with label λ j . Ishibuchi and

Nakashima (2001); Ishibuchi and Yamamoto (2005) argued that weighing rules accord-
ing to (4) allows for modeling more flexible decision boundaries and thereby improves
classification accuracy. The certainty factor (5) is the m-estimate for m = 2 (Press
et al. 1992).

The class predicted by FURIA is the one with maximal support. In the case where x
is not covered by any rule, which means that s j (x) = 0 for all classesλ j , a classification
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decision is derived in a separate way; see Sect. 3.6 below. In the case of a tie, a decision
in favor of the class with highest frequency is made.

3.6 Rule stretching

To handle the aforementioned non-covering problem, Eineborg and Boström (2001)
replace all rules by their minimal generalizations for the given instance. A general-
ization or “stretching” of a rule is obtained by deleting one or more of its antecedents,
and a generalization is minimal if it does not delete more antecedents than neces-
sary to cover the query instance. Thus, the minimal generalization of a rule is simply
obtained by deleting all antecedents that are not satisfied by the query. Having derived
all minimal generalizations, the authors re-evaluate each rule by its Laplace accuracy
on the training data, and then classify the query by the rule with the highest evalua-
tion. Experimentally, it has been shown that this strategy, that we subsequently refer
to as EB-stretching, is better than using a default rule, i.e., simply predicting the most
frequent class.

Unfortunately, EB-stretching has a high computational complexity, as it requires
generalizing and re-evaluating every rule. Doing this on demand, for a fixed query,
has a complexity of O(|RS| · |DT |), with |RS| the number of rules, and |DT | the size
of the training set. Besides, it is worth mentioning that all training instances have to
be stored. Alternatively, it is possible to pre-compute the evaluation of each possible
generalization, but since a rule r with antecedent set A(r) can be generalized in 2|A(r)|
different ways, this comes along with large storage requirements.

To avoid these disadvantages, we propose an alternative approach that exploits the
order in which the antecedents had been learned, treating them as a list 〈α1, α2, . . . , αm〉
instead of a set {α1, α2, . . . , αm}. The idea is that the ordering reflects the importance
of the antecedents, an assumption that is clearly justified in light of the underlying
rule learning algorithm. As generalizations, we then only allow lists of the form
〈α1, α2, . . . , αk〉 with k ≤ m. For the minimal generalization, k is simply given by
j − 1, where α j is the first antecedent which is not satisfied by the query instance. To
re-evaluate generalized rules, we use the measure

p + 1

p + n + 2
× k + 1

m + 2
,

where p is the number of positive and n the number of negative examples covered by
the rule. The second factor accounts for the degree of generalization: Heavily pruned
rules are discounted, as pruning is likely to decrease the rule’s relevance for the query.
Furthermore, by Laplace-correcting the relative number of remaining antecedents,
k/m, preference is given to longer and, hence, more specific rules.5

Computationally, the above rule stretching strategy is much more efficient than EB-
stretching. The complexity for re-evaluating a rule r is O(|A(r)|). Moreover, since the

5 For ease of presentation, we combined two selectors (half-intervals) referring to the same attribute into
a single fuzzy interval in Sect. 3.3. It is important to mention that, in the context of rule stretching, the two
selectors are still treated as different antecedents.
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evaluations of all generalizations of a rule can be calculated and stored directly in the
course of the rule learning process, in which antecedents are learned in a successive
way, there is no need for storing the training data.

4 Experimental results

To analyze the performance of our FURIA approach, we conducted several
experimental studies under the WEKA 3.5.5 framework (Witten and Frank 2005).
As a starting point, we used the RIPPER implementation of WEKA (“JRip”) for
re-implementing FURIA.

4.1 Classification accuracy

In a first study, we compared FURIA to other classifiers with respect to classification
accuracy. The minimum number of covered instances per premise was set to 2, and
for the number of folds and the number of optimizations in FURIA and RIPPER we
used, respectively, values 3 and 2 (which is the default setting in WEKA and leads to
RIPPER2).

Additionally, we also included the C4.5 decision tree learner (Quinlan 1993) as
a well-known benchmark classifier and, moreover, added two fuzzy rule-based clas-
sifiers from the KEEL suite (Alcalá-Fernandez et al. 2009): The CHI algorithm is
based on Chi et al. (1995, 1996) and uses rule weighing as proposed by Ishibuchi and
Yamamoto (2005).6 The SLAVE algorithm makes use of genetic algorithms to learn
a fuzzy classifier (Gonzalez and Perez 1999, 2001).7 Both algorithms are frequently
used for experimental purposes (e.g., Fernández et al. 2007; Ishibuchi and Yamamoto
2003; Cordon et al. 2004; Zolghadri and Mansoori 2007).

We collected 40 data sets from the UCI (Asuncion and Newman 2007) and the
STATLIB (Meyer and Vlachos 2007) repositories and from (Bulloch 2007; Barker
2007; Harvey 2007); see Table 1 for an overview. Additionally, we created five data
sets with data from a German meteorological institute (DWD).8 In these data sets, the
task is to predict the origin (one of the federal states in Germany) of a set of mea-
surements (e.g., sunshine duration, temperature,. . .). As our fuzzy extension is not
applicable to nominal attributes, we only selected data sets having at least as many
numeric as nominal attributes.

The experiments were conducted by randomly splitting each data set into 2/3 for
training and 1/3 for testing, and deriving the classification accuracy on the testing
data for each learner. This procedure was repeated 100 times to stabilize the results.
Table 2 summarizes the classification accuracies.9 The overall picture conveyed by the

6 We used the following parameter setting: 3 fuzzy sets, product t-norm, maximum inference, and weighting
scheme number 2 from (Ishibuchi and Yamamoto 2005).
7 We used the following parameter setting: 5 fuzzy sets, 500 iterations without change, mutation probability
0.01, use weights, population size 100.
8 Available at: http://www.uni-marburg.de/fb12/kebi/research/repository.
9 The classifier FURIA-c, which also appears in the table, will be analyzed in Sect. 4.2.
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Table 1 Properties of the data sets used in the experiments: number of instances and classes, continuous
(c) and nominal (n) attributes, and attributes with missing instances (m)

Data set # Inst. # Classes # Attributes

c n m

analcatdata-authorship 841 4 70 0 0

analcatdata-bankruptcy 50 2 5 1 0

analcatdata-cyyoung8092 97 2 7 3 0

analcatdata-cyyoung9302 92 2 6 4 0

analcatdata-esr 32 2 2 0 0

analcatdata-halloffame 1340 3 15 2 1

analcatdata-lawsuit 264 2 3 1 0

analcatdata-votesurvey 48 4 3 1 0

biomed 209 2 7 1 2

cars 406 3 6 1 2

collins 500 15 20 3 0

ecoli 336 8 7 0 0

eucalyptus 736 5 14 5 9

glass 214 6 9 0 0

haberman 306 2 2 1 0

heart-statlog 270 2 13 0 0

ionosphere 351 2 34 0 0

iris 150 3 4 0 0

liver-disorders 345 2 6 0 0

metStatCoordinates 4748 16 3 0 0

metStatRainfall 4748 16 12 0 0

metStatRST 336 12 3 0 0

metStatSunshine 422 14 12 0 0

metStatTemp 673 15 12 0 0

mfeat-factors 2000 10 216 0 0

mfeat-fourier 2000 10 76 0 0

mfeat-karhunen 2000 10 64 0 0

mfeat-morphological 2000 10 6 0 0

mfeat-zernike 2000 10 47 0 0

optdigits 5620 10 64 0 0

page-blocks 5473 5 10 0 0

pasture-production 36 3 21 1 0

pendigits 10992 10 16 0 0

pima diabetes 768 2 8 0 0

prnn-synth 250 2 2 0 0

schizo- 340 2 12 2 11

segment 2310 7 19 0 0

sonar 208 2 60 0 0
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Table 1 continued

Data set # Inst. # Classes # Attributes

c n m

squash-unstored 52 3 20 3 8

synthetic control 600 6 60 1 0

vehicle 846 4 18 0 0

vowel 990 11 10 2 0

waveform-5000 5000 3 40 0 0

wine 178 3 13 0 0

wisconsin-breast-cancer 699 2 9 0 1

results is clearly in favor of FURIA, which outperforms the other methods on most
data sets. To analyze the differences between the classifiers more closely, we followed
the two-step procedure recommended by Demšar (2006): First, a Friedman Test is
conducted to test the null hypothesis of equal classifier performance (Friedman 1937,
1940). In case this hypothesis is rejected, which means that the classifiers’ perfor-
mance differs in a statistically significant way, a posthoc test is conducted to analyze
these differences in more detail.

The Friedman test is a non-parametric test which is based on the relative perfor-
mance of classifiers in terms of their ranks: For each data set, the methods to be
compared are sorted according to their performance, i.e., each method is assigned a
rank (in case of ties, average ranks are assigned); see Table 3. Let k be the number of
classifiers and N the number of data sets. Let r j

i be the rank of classifier j on data set

i , and R j = 1
N

∑N
i=1 r j

i the average rank of classifier j . Under the null-hypothesis,
the Friedman statistic

χ2
F =

12N

k(k + 1)

⎡
⎣ k∑

j=1

(R j )
2 − k · (k + 1)2

4

⎤
⎦

is asymptotically χ2 distributed with k − 1 degrees of freedom. If N and k are not
large enough, it is recommended to use the following correction which is F-distributed
with (k − 1) and (k − 1)(N − 1) degrees of freedom (Iman and Davenport 1980):

(N − 1) · χ2
F

N · (k − 1)− χ2
F

(6)

In our case, the value of (6) is 39.77, while the critical value for the significance level
α = 0.01 is only 3.43. Thus, the null-hypothesis can quite safely be rejected, which
means that there are significant differences in the classifiers’ performance.

Given the result of the Friedman Test, we conducted the Nemenyi Test (Nemenyi
1963) as a posthoc test to compare classifiers in a pairwise manner. According to this
test, the performance of two classifiers is significantly different if the distance of the
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Table 2 Estimation of classification accuracies in terms of averages on the testing data (best per data set
in bold, excluding separately analyzed FURIA-c)

Data set FURIA RIPPER C4.5 CHI SLAVE FURIA-c

analcatdata-authorship 95.67 93.05 93.50 71.60 91.87 95.26

analcatdata-bankruptcy 82.57 81.97 81.29 74.40 77.80 83.83

analcatdata-cyyoung8092 80.02 80.04 79.86 70.72 79.32 80.17

analcatdata-cyyoung9302 82.64 82.01 80.82 80.27 83.90 82.96

analcatdata-esr 80.90 82.38 80.36 79.55 77.72 81.73

analcatdata-halloffame 92.92 92.87 92.87 92.18 92.68 92.89

analcatdata-lawsuit 98.00 97.54 97.94 94.93 94.81 97.96

analcatdata-votesurvey 36.92 34.40 38.75 40.19 29.51 36.35

biomed 88.31 87.40 87.80 80.64 84.74 88.12

cars 79.08 75.93 82.15 68.97 70.68 78.51

collins 96.35 92.89 96.10 42.63 50.87 95.29

ecoli 83.12 80.57 81.35 77.43 81.03 82.44

eucalyptus 60.62 58.69 59.98 54.09 58.16 60.29

glass 68.22 63.18 66.69 61.39 61.83 67.01

haberman 72.72 72.16 71.75 73.08 73.31 72.80

heart-statlog 79.75 78.44 77.08 68.66 78.44 79.56

ionosphere 89.59 88.64 88.72 66.40 89.83 89.40

iris 94.76 93.45 94.25 92.27 94.92 94.10

liver-disorders 67.15 65.93 63.40 58.75 59.77 66.76

metStatCoordinates 93.02 92.04 92.87 46.79 58.77 92.83

metStatRainfall 64.51 60.66 59.47 24.51 29.35 63.79

metStatRST 33.56 36.08 38.60 25.24 42.02 33.31

metStatSunshine 49.05 44.48 46.78 37.93 28.83 48.50

metStatTemp 50.71 47.45 53.18 30.63 22.10 50.39

mfeat-factors 92.09 87.05 87.96 89.19 86.83 91.76

mfeat-fourier 76.69 71.37 74.42 69.27 73.49 76.07

mfeat-karhunen 86.47 79.13 80.20 82.55 78.37 85.57

mfeat-morphological 72.09 70.74 71.60 57.93 67.08 72.08

mfeat-zernike 73.67 67.58 69.11 72.37 68.26 72.80

optdigits 94.78 89.68 89.51 45.90 93.45 94.42

page-blocks 97.02 96.79 96.89 91.96 93.58 96.91

pasture-production 74.67 68.46 73.67 44.23 53.63 73.23

pendigits 97.77 95.54 95.92 97.45 87.26 97.32

pima diabetes 74.71 74.56 73.43 72.55 73.65 74.76

prnn-synth 83.57 82.50 83.18 84.14 81.51 83.46
schizo- 80.52 75.33 74.93 56.08 56.29 79.97

segment 96.50 94.53 95.95 83.65 88.87 96.04

sonar 77.01 72.41 72.09 74.61 68.50 76.34

squash-unstored 76.44 71.74 76.08 70.56 65.56 77.10
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Table 2 continued

Data set FURIA RIPPER C4.5 CHI SLAVE FURIA-c

synthetic control 89.75 82.85 90.00 68.33 89.23 88.60

vehicle 70.10 67.80 71.38 61.99 64.08 69.75

vowel 75.43 64.71 75.60 59.49 63.84 71.87

waveform 82.24 78.72 75.05 72.38 75.34 82.23

wine 93.25 90.02 91.22 92.77 92.46 92.21

wisconsin-breast-cancer 95.68 95.58 94.51 90.20 95.49 95.53

average ranks exceeds the critical distance CDα = qα,k,∞ · 1√
2

, where the q-value is
taken from the Studentized Range Statistic (Newman 1939). The results of this test
are summarized in Fig. 3: FURIA is significantly better than all other classifiers at the
significance level α = 0.01.

4.2 The effect of fuzzification

The previous results have shown that FURIA is a significant improvement in compari-
son to RIPPER. Since FURIA differs from RIPPER in several ways, it is interesting to
investigate the influence of the different modifications. One may wonder, for example,
to what extent the improvements can be attributed to the use of fuzzy instead of con-
ventional rules. To answer this question, we conducted some additional experiments
with a “crisp” variant of FURIA, included in Table 2 under the name FURIA-c. To
optimize an interval as originally produced by RIPPER, this variant conducts a search
process quite similar to the search for an optimal fuzzy interval (cf. Sect. 3.4). Instead
of a trapezoid, however, it is again only allowed to use intervals, i.e., it simply tries to
optimize the original decision boundary in terms of the rule’s purity.

Even though FURIA-c still compares favorably to RIPPER (42 wins and 3 losses)
and C4.5 (34 wins and 11 losses), the gains are less clear than those of FURIA. More
importantly, in a direct comparison, FURIA achieves 38 wins. Besides, six of the seven
data sets won by FURIA-c are two-class data sets, and the remaining one is a three-
class data set, suggesting that fuzzy rules are especially useful for problems with many
classes. A possible explanation for this finding is that fuzzy rules are able to generate
more flexible decision boundaries which are smooth and not necessarily axis-parallel
(see Fig. 4 for an illustration), which is especially advantageous for difficult problems.

4.3 Model complexity

Since FURIA disables the pruning step in IREP*, it learns more specialized rules.
Therefore, it is likely to produce models that are more complex, in terms of the num-
ber of rules and their lengths, than those produced by RIPPER. Indeed, while FURIA
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Table 3 Ranks of the classifiers

Data set FURIA RIPPER C4.5 CHI SLAVE

analcatdata-authorship 1 3 2 5 4

analcatdata-bankruptcy 1 2 3 5 4

analcatdata-cyyoung8092 2 1 3 5 4

analcatdata-cyyoung9302 2 3 4 5 1

analcatdata-esr 2 1 3 4 5

analcatdata-halloffame 1 3 2 5 4

analcatdata-lawsuit 1 3 2 4 5

analcatdata-votesurvey 3 4 2 1 5

biomed 1 3 2 5 4

cars 2 3 1 5 4

collins 1 3 2 5 4

ecoli 1 4 2 5 3

eucalyptus 1 3 2 5 4

glass 1 3 2 5 4

haberman 3 4 5 2 1

heart-statlog 1 2 4 5 3

ionosphere 2 4 3 5 1

iris 2 4 3 5 1

liver-disorders 1 2 3 5 4

metStatCoordinates 1 3 2 5 4

metStatRainfall 1 2 3 5 4

metStatRST 4 3 2 5 1

metStatSunshine 1 3 2 4 5

metStatTemp 2 3 1 4 5

mfeat-factors 1 4 3 2 5

mfeat-fourier 1 4 2 5 3

mfeat-karhunen 1 4 3 2 5

mfeat-morphological 1 3 2 5 4

mfeat-zernike 1 5 3 2 4

optdigits 1 3 4 5 2

page-blocks 1 3 2 5 4

pasture-production 1 3 2 5 4

pendigits 1 4 3 2 5

pima diabetes 1 2 4 5 3

prnn-synth 2 4 3 1 5

schizo- 1 2 3 5 4

segment 1 3 2 5 4

sonar 1 3 4 2 5

squash-unstored 1 3 2 4 5

synthetic control 2 4 1 5 3
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Table 3 continued

Data set FURIA RIPPER C4.5 CHI SLAVE

vehicle 2 3 1 5 4

vowel 2 3 1 5 4

waveform 1 2 4 5 3

wine 1 5 4 2 3

wisconsin-breast-cancer 1 2 4 5 3

average 1.40 3.07 2.60 4.24 3.69

Fig. 3 Average classifier ranks depicted on a number line. Connections between classifiers indicate
non-significant differences at significance level α = 0.01

µ µ

Fig. 4 The left figure shows three classes in the upper left, lower left, and lower right corner of the data
space. Classification rules for every class are shown by the solid lines bounding the rule core and the dashed
lines bounding the rule support. The membership functions are given on the bars on the bottom and on
the left. The right picture shows the decision boundaries using the product-sum combination. As can be
seen, there is a non-axis-parallel decision boundary between the three classes. The square in the upper right
belongs to equal parts to the upper left and lower right classes

learns 25.4 rules on average, RIPPER generates only 15.5 rules.10 Moreover, while a
FURIA rule has 2.5 conditions on average, a RIPPER rule has only 1.7; see Table 4

10 Including RIPPER’s default rule.
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Table 4 The number of rules per rule set and the average number of antecedents per rule

Data set FURIA RIPPER CHI SLAVE

Rules Cond. Rules Cond. Rules Cond. Rules Cond.

analcatdata-authorship 15.9 2.7 9.6 1.7 555.1 3 12.1 5.9

analcatdata-bankruptcy 3.8 1.8 2.5 0.7 23.9 3 2.5 1.6

analcatdata-cyyoung8092 3.7 1.5 2.6 0.7 55 3 3.4 2.0

analcatdata-cyyoung9302 3.5 1.3 2.8 0.8 49.5 3 3.1 2.0

analcatdata-esr 2.1 1.1 2 0.5 6.8 3 2.6 1.1

analcatdata-halloffame 14.3 2.8 6.5 1.8 458.9 3 7.2 3.4

analcatdata-lawsuit 3.7 1.5 2 1 24.7 3 2.6 1.7

analcatdata-votesurvey 1.7 1.4 2.3 0.8 13.6 3 7.3 2.1

biomed 8.6 2 4.4 1 55.1 3 4.3 2.7

cars 12.9 2.4 7.1 1.8 54.4 3 12.5 3.3

collins 15.9 1.1 15.2 1 321.7 3 45.8 6.6

ecoli 13.8 2.5 8.3 1.6 47.2 3 11.3 3.0

eucalyptus 14.7 2.6 10.2 1.8 375 3 38.3 5.7

glass 11.3 2.2 6.7 1.7 42.7 3 12.3 3.3

haberman 4.4 1.5 2 0.8 15.8 3 4 1.7

heart-statlog 8.4 2.5 4.3 1.5 164.9 3 7 3.6

ionosphere 8.3 2 4.7 1.1 168.9 3 8 3.8

iris 4.4 1.5 3.3 0.8 14.9 3 3.1 1.2

liver-disorders 8.2 2.2 4.3 1.8 42.1 3 5.9 3.4

metStatCoordinates 69.7 2.3 38.8 2.1 15.6 3 12.8 2.4

metStatRainfall 123.9 4.5 82.7 3.6 215.6 3 30.3 4.4

metStatRST 9.9 2.2 10 1.7 15 3 9.5 2.3

metStatSunshine 25 2.7 17 1.9 91 3 39.3 4.3

metStatTemp 31.5 2.8 22.4 2.2 36.4 3 15.6 3.5

mfeat-factors 45 3 28.5 2.2 1317.2 3 44.3 12.2

mfeat-fourier 52.4 3.8 29.2 2.6 1317.2 3 73.2 10.6

mfeat-karhunen 59.1 3.2 38.4 2.6 1314.4 3 64.7 9.7

mfeat-morphological 25.1 2.6 19 2.1 31.4 3 15.7 3.1

mfeat-zernike 44.9 3.7 30.6 2.8 1257.6 3 77.7 10.0

optdigits 97.8 4.9 59.6 3.9 3708.5 3 68.6 8.0

page-blocks 25.6 3.2 14.7 2.2 47.6 3 10.1 3.5

pasture-production 3.4 1.4 3.2 0.7 24 3 3.6 3.3

pendigits 110.9 4.8 67.6 3.4 2745.2 3 37 7.6

pima diabetes 8.5 2.6 3.9 1.8 98.6 3 9.3 3.7

prnn-synth 4.4 1.4 3.5 1 8 3 2.4 1.6

schizo- 15.1 1.7 6.5 1.2 136.7 3 7.9 5.3

segment 26.9 3.1 17 2.2 275.1 3 15.8 4.5

sonar 8.1 2.3 4.3 1.4 137.1 3 6.9 4.7

squash-unstored 4 1.5 3.2 0.8 33.8 3 4.1 2.6
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Table 4 continued

Data set FURIA RIPPER CHI SLAVE

Rules Cond. Rules Cond. Rules Cond. Rules Cond.

synthetic control 17.3 2.6 10.6 1.8 394.3 3 9.1 6.3

vehicle 20.7 3.3 13.8 2.2 314.4 3 26.4 6.5

vowel 53.8 3.3 34.2 2.5 251.5 3 51.1 5.6

waveform 79.9 5.9 27.9 3.8 2874.7 3 50.7 9.3

wine 6.2 1.9 3.5 1.1 101.2 3 3.8 2.9

wisconsin-breast-cancer 12.2 2.9 4.8 1.5 172.4 3 5.8 3.7

average 25.4 2.5 15.5 1.7 431.7 3 19.8 4.4

for detailed statistics. Consequently, the performance gain of FURIA in comparison
with RIPPER comes at the cost of slightly more complex models.

Still, however, FURIA compares favorably with the other algorithms. Its average
model size is quite comparable to the one of SLAVE, which creates 19.8 rules per
model. Besides, the rules of FURIA are much shorter than the rules of SLAVE,
which consist of 4.4 conditions on average. Since the CHI classifier uses a grid-based
approach, every rule contains all attributes. In general, this leads to very large rule sets
with long condition parts.

4.4 The effect of the rule stretching algorithm

To investigate the effectiveness of our novel rule stretching method, we compared it
to the original EB-stretching of Eineborg and Boström (2001). More specifically, we
compared the performance of FURIA with the performance of a variant of FURIA
that uses EB-stretching instead of our rule stretching method. The results, 19 wins for
the variant, 26 losses, and one tie, suggest that both methods are comparable in terms
of classification accuracy. Furthermore, we can confirm that rule stretching works bet-
ter than default classification (predicting the most frequent class): both, FURIA and
EB-stretching, achieve 42 wins against this strategy.

The rule stretching procedure applies only in cases in which the given instance is
not covered by any rule. Since the number of uncovered instances depends on the data
set (see Table 5), a theoretical comparison between the complexity of the two methods
is difficult: our approach conducts a fixed number of weight calculations, whereas
EB-stretching recalculates the weights only on demand. Therefore, we compared the
number of times a rule weight has to be calculated in EB-stretching with the total num-
ber of all antecedents, which corresponds to the number of calculations conducted by
our rule stretching procedure. To avoid a repeated calculation of the same weights, we
cached the weights in EB-stretching. Table 5 shows the results of this comparison, and
Fig. 5 plots the number of calculations as a function of the number of antecedents. As
can be seen from the corresponding regression curves, this dependency is super-linear
for EB-stretching while being linear for our approach. This is in perfect agreement
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Table 5 The number of times the rule weight has to be calculated for the rule stretching procedure

Data set Uncovered Novel (Eineborg and Boström 2001) Diff.

analcatdata-authorship 0.05 42.70 49.40 6.70

analcatdata-bankruptcy 0.02 6.80 0.80 −6.00

analcatdata-cyyoung8092 0.08 5.50 1.80 −3.70

analcatdata-cyyoung9302 0.07 4.70 1.10 −3.60

analcatdata-esr 0.04 2.30 0.20 −2.10

analcatdata-halloffame 0.03 39.80 48.50 8.70

analcatdata-lawsuit 0.00 5.50 0.70 −4.80

analcatdata-votesurvey 0.77 2.40 1.70 −0.70

biomed 0.05 17.60 9.80 −7.80

cars 0.11 31.20 34.50 3.30

collins 0.01 18.00 7.20 −10.80

ecoli 0.05 34.70 26.30 −8.40

eucalyptus 0.30 38.50 61.70 23.20

glass 0.15 24.60 22.40 −2.20

haberman 0.07 6.40 2.40 −4.00

heart-statlog 0.08 21.20 21.40 0.20

ionosphere 0.04 17.00 9.90 −7.10

iris 0.01 6.60 0.90 −5.70

liver-disorders 0.17 18.20 19.90 1.70

metStatCoordinates 0.02 163.20 120.30 −42.90

metStatRainfall 0.23 556.60 1737.60 1181.00

metStatRST 0.49 22.10 24.10 2.00

metStatSunshine 0.26 67.60 91.10 23.50

metStatTemp 0.33 89.00 121.40 32.40

mfeat-factors 0.06 134.40 227.60 93.20

mfeat-fourier 0.13 200.60 622.00 421.40

mfeat-karhunen 0.10 189.30 426.00 236.70

mfeat-morphological 0.08 65.70 72.60 6.90

mfeat-zernike 0.18 167.60 489.20 321.60

optdigits 0.04 482.10 1949.60 1467.50

page-blocks 0.01 82.00 87.90 5.90

pasture-production 0.23 4.60 1.40 −3.20

pendigits 0.01 528.00 1429.30 901.30

pima diabetes 0.13 22.00 30.60 8.60

prnn-synth 0.08 6.10 2.00 −4.10

schizo- 0.13 25.20 25.90 0.70

segment 0.02 83.70 91.10 7.40

sonar 0.13 18.80 20.00 1.20

squash-unstored 0.06 6.10 1.40 −4.70

synthetic control 0.08 45.50 49.70 4.20
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Table 5 continued

Data set Uncovered Novel (Eineborg and Boström 2001) Diff.

vehicle 0.22 68.60 118.60 50.00

vowel 0.11 175.00 291.00 116.00

waveform 0.10 474.70 2645.80 2171.10

wine 0.04 11.50 4.30 −7.20

wisconsin-breast-cancer 0.02 34.90 26.11 −8.79

The first column shows the relative number of testing instances that were not covered by any rule. The
second column shows the number of calculations for our approach and the third column for the one of
Eineborg and Boström (2001). The last column shows the difference of these two
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Fig. 5 The number of weight calculations (y-axis) as a function of the number of antecedents (x-axis) for our
rule stretching method (diamonds) and EB-stretching (circles). Trends are shown in terms of corresponding
regression curves

with the theoretical considerations in Sect. 3.6. Thus, from a complexity point of view,
our approach is especially advantageous for complex models.

As another advantage, recall that our approach does not have to store the training
data. In this regard, it is interesting to note that, if the complete training data is kept in
memory during classification, as done by Eineborg and Boström’s approach, uncov-
ered examples could also be handled by a simple nearest neighbor (NN) classifier
(Aha et al. 1991). We tested this idea and, interestingly enough, found that FURIA
in combination with a simple 1-NN classifier outperforms FURIA with EB-stretching
for 35 out of 45 data sets.

4.5 Runtime

It is clear that FURIA, as an extension of RIPPER encompassing more complex
strategies such as fuzzification and rule stretching, will pay its improved accuracy
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with an increase in runtime. To elaborate on this aspect, we compared the following
algorithms:

– RIPPER
– RIPPER without IREP (RIP*)
– RIPPER learning an unordered rule set again without IREP (RIP**)
– FURIA without post generalization or fuzzification of rules (FUR*)
– FURIA

Table 6 shows the runtime results in seconds (all measurements were performed
on a Intel Core2Duo 2.4 Ghz). As expected, RIPPER is the most efficient variant.
Disabling the IREP procedure (RIP*) does indeed slow down the algorithm (keep in
mind that, since the pruning set is now empty, growing data is larger at the beginning).
A further increase in runtime is caused by changing from an ordered rule list to the
unordered rule set (RIP**). This is also expected since the unordered version learns
rules in a one-vs-all fashion, while for the ordered variant, the training data becomes
successively smaller (training instances from already covered classes are dropped).
There is not much difference between the unordered RIPPER without IREP (RIP**)
to FURIA without fuzzification or crisp generalization after rule learning (FUR*). The
difference between RIP** and FUR* can be explained by the rule stretching procedure
that needs additional time to determine the weights during classification.

The quintessence of this study is that, compared to RIPPER, the extensions and
modifications of FURIA (disabling of the IREP procedure, the change from an ordered
rule list to an unordered list, the calculation of the rule stretching weights, and the
fuzzification procedure) cause an increase of runtime by a factor between 1.5 and 7.7
(average 3.4).

5 Related work

Since the literature on (fuzzy) rule learning abounds, a comprehensive survey of
this field is clearly beyond the scope of this paper. Nevertheless, this section is
meant to convey a rough picture of the field and to briefly mention some related
work.

The field of fuzzy rule learning can be roughly separated into several subfields.
Firstly, there are fuzzy extensions of conventional rule learning techniques, not only
for the propositional case but also for the case of first-order logic (Drobics et al. 2003;
Prade et al. 2003; Serrurier and Prade 2007). Quite popular in the fuzzy field are
grid-based approaches as popularized by Wang and Mendel (1992), which proceed
from fixed fuzzy partitions of the individual dimensions. They are not very flexible
and suffer from the “curse of dimensionality” in the case of many input variables but
may have advantages with respect to interpretability (Guillaume 2001). A well-known
representative of this kind of approach is the CHI algorithm that we also used in our
experiments (Chi et al. 1995, 1996). It proceeds from a fuzzy partition for each attribute
and learns a rule for every grid cell. This is done by searching the training instance
with maximal degree of membership in this cell (matching degree of the rule pre-
mise) and adopting the corresponding class attribute as the rule consequent. Another
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Table 6 Average model building times in seconds

Data set RIPPER RIP* RIP** FUR* FURIA

analcatdata-authorship 0.348 0.588 0.828 0.840 0.873

analcatdata-bankruptcy 0.001 0.002 0.003 0.003 0.003

analcatdata-cyyoung8092 0.004 0.005 0.012 0.010 0.010

analcatdata-cyyoung9302 0.003 0.004 0.008 0.008 0.008

analcatdata-esr 0.000 0.000 0.001 0.001 0.001

analcatdata-halloffame 0.461 0.706 0.996 1.008 1.046

analcatdata-lawsuit 0.003 0.003 0.006 0.005 0.007

analcatdata-votesurvey 0.002 0.004 0.003 0.004 0.004

biomed 0.012 0.013 0.027 0.030 0.031

cars 0.045 0.094 0.125 0.138 0.146

collins 0.210 0.300 0.329 0.321 0.327

ecoli 0.032 0.066 0.084 0.089 0.095

eucalyptus 0.280 0.659 0.890 0.953 0.976

glass 0.034 0.054 0.079 0.084 0.090

haberman 0.010 0.016 0.034 0.045 0.046

heart-statlog 0.023 0.033 0.068 0.077 0.080

ionosphere 0.082 0.115 0.221 0.228 0.233

iris 0.002 0.004 0.007 0.006 0.006

liver-disorders 0.024 0.049 0.100 0.121 0.124

metStatCoordinates 1.327 4.199 4.834 7.481 10.266

metStatRainfall 11.287 24.868 29.186 35.720 42.819

metStatRST 0.065 0.134 0.164 0.170 0.181

metStatSunshine 0.321 0.566 0.669 0.658 0.684

metStatTemp 0.423 0.887 1.033 1.108 1.156

mfeat-factors 10.623 23.466 25.879 25.537 25.762

mfeat-fourier 9.733 30.836 33.859 32.685 33.236

mfeat-karhunen 7.973 19.593 21.658 20.720 21.164

mfeat-morphological 0.571 1.808 2.059 2.263 2.826

mfeat-zernike 6.563 17.002 18.605 17.943 18.383

optdigits 14.817 39.101 44.720 50.118 58.243

page-blocks 1.574 2.599 3.426 3.954 5.6679

pasture-production 0.002 0.005 0.006 0.006 0.0071

pendigits 10.716 30.488 35.114 47.218 77.755

pima diabetes 0.073 0.132 0.278 0.335 0.358

prnn-synth 0.007 0.010 0.024 0.027 0.030

schizo- 0.050 0.081 0.173 0.196 0.203

segment 0.940 2.178 2.666 2.818 3.074

sonar 0.082 0.103 0.224 0.230 0.233

squash-unstored 0.005 0.006 0.009 0.009 0.009

synthetic control 0.650 1.301 1.563 1.476 1.495

123



316 J. Hühn, E. Hüllermeier

Table 6 continued

Data set RIPPER RIP* RIP** FUR* FURIA

vehicle 0.282 0.787 0.900 0.949 0.988

vowel 0.715 1.755 1.949 2.013 2.164

waveform 7.778 29.359 42.688 50.521 57.809

wine 0.010 0.015 0.025 0.025 0.026

wisconsin-breast-cancer 0.025 0.053 0.085 0.102 0.117

FUR* = FURIA w/o fuzzification process, R* = RIPPER unordered w/o IREP, R** = RIPPER w/o
IREP

approach of this subfield, which prevails the literature on conventional rule learning
but has received less attention in the fuzzy field so far, is rule covering algorithms
(Cloete and Van Zyl 2006). In this category, the FR3 rule learner that has recently
been proposed by Hühn and Hüllermeier (2009) deserves special mentioning. Just
like FURIA, FR3 draws on the RIPPER algorithm and modifies it in a quite similar
way. However, FR3 has a completely different focus and embeds the modified RIP-
PER algorithm in a round robin learning scheme, i.e., it learns an ensemble of binary
classification models, one for each pair of classes. As opposed to this, FURIA learns
a single multi-class model.

Secondly, several fuzzy variants of decision tree learning, following a divide-and-
conquer strategy and producing rule sets of a special (hierarchical) structure, have
been proposed (Wang et al. 2007). As this direction is only indirectly related to our
work, we do not go into further details.

Thirdly, hybrid methods that combine fuzzy set theory with other (soft computing)
methodologies, notably evolutionary algorithms and neural networks, are especially
important in the field of fuzzy rule learning. For example, evolutionary algorithms are
often used to optimize (“tune”) a fuzzy rule base or for searching the space of potential
rule bases in a (more or less) systematic way (Cordon et al. 2004). One of these classi-
fiers, which was also included in our experimental comparison, is the SLAVE classifier
(Gonzalez and Perez 1999, 2001). It uses a genetic learning approach to create a fuzzy
rule-based system by following a covering scheme. SLAVE represents each rule as
a single chromosome. It uses an iterative approach, which means that the result of
the genetic algorithm is not meant to cover all positive examples. Instead, the genetic
algorithm is repeated until the iteratively generated set of rules is sufficient to represent
the training set. Another interesting approach in this area is the one proposed by del
Jesus et al. (2004), which applies the idea of boosting (Kearns 1988) to the evolution-
ary learning of rule-based classifiers. Neuro-fuzzy methods (Mitra and Hayashi 2000;
Nauck et al. 1997) encode a fuzzy system as a neural network and apply corresponding
learning methods (like backpropagation). Fuzzy rules are then extracted from a trained
network.

Finally, with regard to the idea of rule stretching that we proposed in this paper, it is
worth mentioning that some other approaches have been proposed in the literature that
are closely related, in particular the idea to combine instance-based and rule learning.
This idea has been realized in the RISE system (Domingos 1995), in which single
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instances are considered as maximally specific rules. The learning procedure essen-
tially tries to aggregate specific rules into more general ones. At classification time,
an instance is classified by the nearest rule. Another combination of instance-based
and rule learning is proposed by Hendrickx and van den Bosch (2005), who make use
of the rule set to create new features, indicating whether or not a rule is activated for
an instance. A classification is made by searching the query’s nearest neighbor in the
novel feature space and assigning its class.

6 Concluding remarks

In this paper, we introduced a fuzzy rule-based classifier called FURIA, which is an
advancement of the famous RIPPER algorithm. FURIA differs from RIPPER in several
respects, notably in the use of fuzzy instead of conventional rules. This way, it becomes
possible to model decision boundaries in a more flexible way. Besides, FURIA makes
use of a novel rule stretching technique which is computationally less complex than
a hitherto existing alternative and improves performance in comparison to the use of
a default rule. Combined with the sophisticated rule induction techniques employed
by the original RIPPER algorithm, these improvements have produced a rule learner
with a superb classification performance, which comes at the price of an acceptable
increase in runtime. In fact, extensive experiments on a large number of benchmark
data sets have shown that FURIA significantly outperforms the original RIPPER, as
well as other fuzzy rule learning methods included for comparison purpose.

A Java implementation of FURIA, running under the open-source machine learning
toolkit WEKA, can be downloaded at http://www.uni-marburg.de/fb12/kebi/research/.
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